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Abstract: Introduction: Tuberculosis is the long-lasting infectious disease caused by bacteria called Mycobacterium 

tuberculosis. Globally, in 2016 alone, approximately 10.4 million new cases have occurred. Africa has shared around 25% of 

the incidence and specifically in Ethiopia around 82 thousand was caught by Tuberculosis. Methods: The study has been 

conducted in, south west Ethiopia, Jimma zone of entire districts and the data is basically secondary which is obtained from 

Jimma zone health office. The counts of Tuberculosis case counts have been analyzed with factors like gender, HIV co-

infection, Population density and age of patients. The Integrated Nested Laplace Approximation (INLA) method of Bayesian 

approach which is fast, deterministic and promising alternative to MCMC method was used to determine posterior marginal of 

the parameters of interest. Results: The Latent Gaussian Model (LGM) of Poisson distributional assumption of Tuberculosis 

cases that includes both fixed and random effects with penalized complexity priors appeared to be the best model to fit the data 

based on the Watanabe Akaike Information Criteria and other supportive criteria. Using Kullback-Leibler Divergence criteria, 

the under-used simplified Laplace approximation indicated that posterior marginal was well approximated by normal 

distribution. The predictive value of the best model is not far deviated from the actual data based on the Conditional Predictive 

Ordinate and the probability integral transform. Conclusions: All the variables were significant under this model and the 

posterior marginal was well approximated by standard Gaussian. The PIT indicated that predictive distribution was less 

affected by outliers and the model was reasonably well. 
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1. Background 

Tuberculosis (TB) is a chronic infectious disease caused 

by a bacillus belonging to a group of bacteria grouped in the 

Mycobacterium tuberculosis complex and remains an 

important public health problem of the 21st century 

according to WHO [64-66]. 

Globally, in 2016 alone, approximately 10.4 million new 

cases (range from 8.8 million to 12.2 million) which are 

equivalent to 140 cases per 100000 have occurred worldwide. 

According to the reports of [65], the most estimated number 

of TB cases is in the WHO South-East Asia Region (45%), 

the WHO African Region (25%) and the WHO Western 

Pacific Region (17%). Similarly, smaller proportions of cases 

occurred in the Eastern Mediterranean Region (7%), the 

WHO European Region (3%) and the WHO Region of the 

Americas (3%) and 1.8 million deaths of tuberculosis were 

reported [2, 65]. 

According to the [65, 66] report, Africa is not among the 

regions registered to have a declined in TB mortality rates. In 

2016, the total notified TB cases in this region was 1303483 

with 84% of pulmonary cases which intake an estimated 

MDR/RR-TB cases of 40000 (ranging from 36000 to 44000) 

among notified pulmonary TB cases. The estimated TB 
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treatment coverage in the WHO Africa region is only 49% 

[65]. 

Different reports and studies certified that Ethiopia has 

only limited resources to spend on combating tuberculosis 

and multidrug-resistant tuberculosis. It ranked the ninth 

among the world most TB burden country and is one of 27 

MDR TB high burden countries. In another way the number 

of deaths due to TB cases without HIV co-infection, was 

estimated to be 26 thousand where the death rate is 

25/100000 and whereas 4 (2.7-5.4) thousands of HIV co-

infected died [13, 14, 65]. 

1.1. Statements of the Problem 

Different study reported from various parts of the country 

showed that the prevalence of smear-positive cases ranged 

from 33 to 213.4/100,000 people in Ethiopia. This burden of 

the diseases was gradually increased till 2016 [2, 13] 

According to different studies, the Bayesian approach have 

empowered over the frequentist based on analysis using TB 

cases and simulation studies [17, 29, 47]. But, the Bayesian 

methods in those studies were based on MCMC sampling 

technique which has the burdensome of time-consuming, 

convergence problem and Monte Carlo error. This implies 

that analysis based on the MCMC technique could essentially 

affect the conclusions of researches. 

In this research, we apply the latent Gaussian model with 

INLA methods under the framework Bayesian hierarchical 

paradigm. Based on this method, this study have attempted to 

answer the basic research questions on: whether there is 

variation in the distribution of TB cases among the districts 

of Jimma zone, whether changes in prior assignment really 

affect the candidate model to be selected. 

1.2. Objective of the Study 

1.2.1. General Objective 

The general objective of this study is to model the counts 

for TB cases in Jimma zone, southwest Ethiopia, using the 

Bayesian hierarchical approach of the latent Gaussian model 

with INLA method. 

1.2.2. Specific Objectives 

The research includes the following specific objectives: 

1. To identify the predictors of TB cases and see the 

variation in the distribution of the cases across districts. 

2. To compare the R-INLA’s inbuilt default priors with the 

informative penalized complexity priors for robustness 

of the priors. 

3. To fit the latent Gaussian model with INLA methods 

under the framework of Bayesian hierarchical paradigm. 

1.3. The Significance of the Study 

The results of this study may help the organization as well 

as individuals who work in this area to get a clue on to what 

extent TB distribution is serious across the districts of Jimma 

zone. It is an additional about the trend of TB prevalence to 

the previous studies. Furthermore, this research can assist for 

those who are interested to work in this area for the future. 

The result of this study will also be expected to be helpful for 

policy makers in TB concern agendas and strategies. 

2. Methods 

2.1. Study Area 

Jimma is one of the zones in the Oromia regional state of 

Ethiopia and is named for the former kingdom of Jimma, 

which was absorbed into the former province of Kaffa in 

1932. The capital town of the zone is Jimma which is the 

largest city in south-west Ethiopia. Recently the zone 

includes around 22 districts. Based on the 2007 census 

conducted by the CSA, this zone has a total population of 

2,486,155 and has an area of 15,568.58 square kilometers. It 

has a population density of 159.69. 

2.2. Source of Data 

The data for this study was mainly based on the secondary 

data that has been obtained from Jimma zone and Jimma 

district health office except for data related to population 

density. All the cases registered on the data base of the office 

from September 2016 to August 2017 have been considered. 

2.3. Variables of the Study 

2.3.1. Response Variable 

The dependent variable of this study was the count of TB 

cases (all forms) in each district of Jimma zone recorded 

under the health office from September 2016 to August 2017. 

2.3.2. Explanatory Variables 

According to the different reviewed study discussed in 

literature parts, the explanatory variables considered for this 

study which has been registered in the health office were 

gender, HIV co-infection, population density and age of 

patients. 

2.4. Methods of Data Analysis 

In any research design, an appropriate data analysis plays a 

crucial place for the relevance of data under consideration. 

Thus, to fit the data well, the researcher has been passed 

through different stages of data analysis for which the 

techniques were presented under sub-sections here below. 

2.4.1. Latent Gaussian Model 

The structured latent Gaussian regression models 

amenable to INLA-based inference can be defined in terms 

of three layers: hyper-parameters, latent Gaussian field, 

likelihood model. The univariate likelihood captures the 

marginal distribution of data and is often chosen as an 

exponential family similar to the framework of generalized 

linear models. 

For those exponential family models, the link function is 

used to have the linear relationship with the response variable. 

Hyper-parameters can appear in the likelihood as dispersion 

parameters like the variance of the Gaussian distributions 
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[43]. Formally, the Latent Gaussian Model (LGM) can be 

written as: 

�
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Thus, considering the latent Gaussian model, the specific 

generalized linear mixed model for cases of TB counts has 

form of: 
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2.4.2. Integrated Nested Laplace Approximation 

Integrated nested Laplace approximation (INLA) is a 

recent approach to Bayesian statistical inference for latent 

Gaussian Markov random field models introduced by [50]. It 

provides a fast, deterministic alternative to Markov chain 

Monte Carlo (MCMC) which, at the moment, is the standard 

tool for inference in such models of Bayesian inference [49] 

The main goal of the approximation techniques used in the 

analysis of the latent Gaussian model is to compute posterior 

marginal for each component of x of expression (2). 

Generally, the marginal posterior distributions for each 

element of the parameter vector can be formulated as: 

7 8��
� 9 = : 7 8��

; , 
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�9 )� ;                      (4) 

And the marginal posterior distribution for each element of 

the hyper-parameter vector: 

7	�</
� = : 7(�/
))�=<                         (5) 

Now, our intention was to compute 7(�/
) from which all 

the relevant 7(�</
) can be obtained and to determine 

7(��/�, 
)  which is needed to compute the parameter 

marginal posteriors7(��/
) [6, 50]. 

2.4.3. Prior Distributions of Parameters 

To do with Bayesian inference, the choice of prior 

distribution is a vital issue as it represents the information 

that is available for the parameters of interest. 

The default priors are the inbuilt priors of R-INLA 

packages of INLA function in which the researchers need not 

to further assign the other priors. It was widely used by 

different researchers [5, 6, 36, 50]. According to the study by 

[50] (who was the developer of R-INLA packages and INLA 

function), these default priors were considered as weak 

informative priors that were checked under different 

conditions before officially encoded under the R-INLA 

packages. If the observation is assumed to follow the Poisson 

distribution, for intercept, INLA assign zero for both mean 

and precision; i.e. Normal (0,0) and all the fixed parameters 

are assigned mean zero and precision 0.001; meaning that 

they have Normal (0,0.001) priors. Whereas the random 

effect (district for our case) is also Gaussian with mean zero 

and precision parameter. Finally, the precision parameter in 

the random effects is also assigned to other distribution of log 

gamma which is log-gamma (1,0.00001) [6, 50]. 

The other and very applicable recent priors are the one 

called Penalized Complexity prior (PC) priors. It was 

developed by [52] and was an informative prior. PC priors 

are general enough to be used in realistically complex 

statistical models and are straightforward enough to be used 

by general practitioners. Using only weak information, PC 

priors represent a unified prior specification with a clear 

meaning and interpretation. With this type of priors, 

researchers were agreed with its advantages of controlling the 

heterogeneity in random effect as it defined with the results 

of the standard deviation of residuals in the fixed effect [52]. 

2.4.4. Posterior Distribution 

A great advantage of working in a Bayesian framework is 

the availability of the entire posterior probability distribution 

for the parameter (s) of interest. Obviously, it is always 

possible and useful to summarize it through some suitable 

synthetic indicators. Summary statistic typically used is the 

posterior mean, which, for a hypothetical continuous 

parameter of interest�, is: 

>(�/
) = : �?(�) )�;∈A                        (6) 

Where B all the possibilities that the variable � can assume 

and the integral becomes summation if the value of �  is 

assumed to be discrete. Moreover, it is also possible to 

determine the indicators of which divide the probability in a 

very convenient way. 

3. Results 

Under this section of data analysis, the researcher tried to 

answer the basic research questions and attained to address 

the objectives by modeling the data with the appropriate 

model fit. In order to further go for the model, we have 

started with the simplest frequency table which has the power 

to intend the appropriate candidate model. 

Thus, using the concept of INLA of the Bayesian 

framework, the results of the models with different fixed and 

random parameters considering the assignment of priors have 

been discussed stepwise here below. The results obtained 

from the different model of this study were compared by 

using standard statistical tools of model selection and 

comparison so that to filter out the relative best model in 

approximating the posterior marginal well. 

3.1. Descriptive Data Analysis 

Without considering the effect of sex and ages, Nono 

bench district accounted minimum (2%) TB cases, whereas 

Sekachokorsa recorded to have the highest (12%). The 

numbers of male cases in each district were greater than 

those of females, except for districts of Agaro, Gomma, 
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Limmu Seka, and Kersa. 

The two extreme age classes (0-14 and >54) have lower 

TB cases which found to be 10% and 14% of the total cases; 

whereas the two middle class ages (15-34 and 35-54) were 

relatively more affected group; which is 30% and 46%. 

The trend seen in the figure 1 below (in the figure legend) 

is also indicated the distribution of TB cases across all 

districts of Jimma zone. 

 

Figure 1. Counts of all forms of TB cases in each district of Jimma zone. 

3.2. Model Based Data Analysis 

The summary data in table 1 (in the table legend) below 

was the outcome of Poisson distributional assumption of Tb 

cases under LGM which include both fixed and random 

effects with penalized complexity priors. The intercept exp 

(1.0703)=2.916. When the sex=female, age=0-14 and 

covariates HIV co-infection and population density were held 

constant, the average incidence rates of TB in Jimma zone 

was found to be 2.916. This is because the intercept was 

interpreted under the reference categories of categorical 

covariates and assumed when the effect of continues 

variables were zero. 

Table 1. Summary results of LGM for a model including both fixed and random effects with Penalized Complexity priors. 

Fixed effects Post. Estimate St. dev Media 95% CI Mode kld 

Results of Fixed Effects 

Intercept 1.0703 0.2530 1.0684 (0.5788, 1.5720) 1.0645 0 

Sex (Male) 0.1080 0.0398 0.1079 (0.0297, 0.1861) 0.1079 0 

Age (15-34) 1.1377 0.0923 1.1373 (0.9575, 1.3197) 1.1366 0 

Age (35-54) 1.6393 0.1190 1.6391 (1.4062, 1.8732) 1.6387 0 

Age (>54) 0.6992 0.1574 0.6995 (0.3893, 1.0073) 0.7001 0 

HIV co infect 0.0427 0.0105 0.0427 (0.0219, 0.0633) 0.0428 0 

Pop. Density 0.0034 0.0012 0.0035 (0.0011, 0.0057) 0.0035 0 

Results of Random Effects 

Prec. of district 12.51 3.911 11.946 (4.5260, 19.730) 8.858 - 

 

The incidence rate of TB with the male was 1.114 times 

greater than those of female. This is to mean that around 11.4% 

more diseases with males. Each category of ages was also 

significant for the occurrences TB cases. Compared to those 

aged 0-14, people with age 15-34 developed TB incidence 

rates by 3.12 times more. In the same fashion, the incidence 

rates of people aged 35-54 was 5.15 times greater than those 

of aged 0-14 and those in the age interval of >54 were 2.01 

times more likely to have TB incidence rates than those 

ranged in the age 0-14. 

For a one unit increase in the HIV co-infected people, the 

TB incidence rate was increased by 1.044 (4.4%). This result 

has an implication that the number of HIV co-infected in this 

study seems not to such signs in determining the relative risk 

of TB cases. On the other hand, the incidence rate of TB was 

increased by 1.0034 (0.34%) as population density was 

increased by one unit. Even though the population density 

was found to be significant, under this model, the coefficient 
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value indicated that this variable was not such potential in 

determining the occurrence of TB cases for this study. 

The Kullback-Leibler divergence (KLD) describes the 

difference between the standard Gaussian and the under-used 

Simplified Laplace Approximation (SLA). Therefore, with 

this model, since the values of KLD irrespective of all 

covariates were zero, the researcher can generalize that the 

marginal posterior densities were well approximated by the 

Normal distribution. Thus, the under-used SLA which is the 

default approximation method in INLA function, in 

determining the densities of posterior marginal was defined 

as having good (small) error rate and no need to use the more 

computationally intensive technique full Laplace 

approximation. 

The summarized result of table 3 below (in the table 

legend) is the posterior marginal distribution of districts 

variation of tuberculosis with penalized complexity priors. 

The interpretation of posterior marginal for the precision of 

the random effect district is more general and bit difficult to 

interpret because it is on the scale of 1/variance. On the other 

hand, it is not possible to take the reciprocal of the (square-

rooted) summaries to obtain information about the posterior 

distribution of the standard deviation, because the 

transformation is not linear. 

Thus, the researcher preferred to compute posterior 

marginal with the scale of standard deviation. The average 

standard deviation of the variation of TB cases across 

districts was 0.294 with (0.207, 0.416) credible interval. The 

diseases with the other were also varied in between. 

Generally, the appendix indicated that there is variation in TB 

cases across districts of Jimma zone. 

3.3. Model Comparison 

In order to select the model which was relatively best fit 

the data, the researcher has intended to compare the model in 

two phases. The candidate models were: 

Model 1: LGM with covariates of fixed effects only and 

default priors. 

Model 2: LGM including covariates of both fixed and 

random effects with default priors. 

Model 3: LGM including covariates of both fixed and 

random effects with PC priors. 

Thus, at the first stage of this model comparison, model 1 

and model 2 have been compared in order to see whether the 

random effect has a significant effect or not. Then, to get 

valued on the robustness of the priors, model 2 and model 3 

have been compared which in fact is to see the actual 

changes on the model as the priors on the parameters were 

changed. All the models were compared with the standard 

model comparison techniques, WAIC and other supportive 

criteria. 

Table 2 is the summary results of WAIC, the effective 

number of parameters and number of equivalent replicates 

for the aforementioned three candidate models with the 

different number of parameters and/or under different priors. 

At the first stage of model comparison, model 2 which is 

the model with covariates of both fixed and random effects 

under the assumption of default priors, have less WAIC 

(1105.25) as compared to model 1, WAIC (1300.79) which in 

fact includes only fixed effect with same priors. Thus, by the 

operational definition that the smaller the WAIC, the better 

the model fit, the researcher can prioritize model 2 as the 

relative better fit of the data under study. It also supports that 

including districts as the random effect has advantages in 

order to handle variation in incidence rates of TB across 

districts. 

Once the model with both fixed and random effects under 

default priors was selected, the researcher was able to 

compare the same model under different priors which help to 

more ascertain the robustness of the priors. We did this 

because it helps to avoid the problem of model fit due to bad 

priors and also used for further investigation as for whether 

the recent informative PC priors was efficient than the R-

INLA inbuilt default priors or not. 

Thus, based on the results of Table 2 below (in the table 

legend), the WAIC for model 3 which was 1104.27 was 

relatively smaller than that of model 2 which was 1105.25. 

However, different literature said that the models of the same 

parameters were considered to be significantly different, if 

their WAIC were at least 3-5 differences [39, 53]. 

Table 2. Results of WAIC, effective number of parameters and number of equivalent replicates for the three candidate models. 

Candidate models WAIC Effective no. of parameters No. of equivalent replicates 

Model 1 1300.79 7.016 23.95 

Model 2 1105.25 25.08 6.699 

Model 3 1104.27 24.74 6.791 

Table 3. Posterior marginal distributions of standard deviation for random effect under default priors. 

Posterior distribution Mean St. dev Media 95% CI 

St. dev for districts 0.325 0.062 0.280 (0.225, 0.470) 

 

As the rule of model difference based on the WAIC’s value 

difference is rule of thumb, other technical methods of model 

comparison have been used to see the clear difference 

between the models. Hence, the concept of the effective 

number of parameters and number of equivalent replicates 

were applicable here. Since the expected number of effective 

parameters is basically the number of independent 

parameters included in the model, the smaller is the better the 

model. This is because, at any stages of model comparison, 

the intention of the researcher was to come with the best 

model of the smaller parameter. Besides, the number of 

equivalent replicates is the result of sample size per effective 
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number of parameters in the model and thus the smaller is an 

indication of poor fit. 

But, the difference in both effective number of parameters 

and number of equivalent replicates for model 2 and 3 seems 

not such significant. However, since there were no clear-cut 

rules that judge to decide on the size of difference on such 

comparison techniques, the researcher has been forced to 

compare the models without valued the size of the difference 

in those model comparison methods. 

Therefore, since the effective number of parameters of 

model 3 (24.74) was slightly smaller than that of model 2 

(25.08), we can say that the candidate model with PC priors 

was relatively better in fitting the data well. Moreover, the 

number of equivalent replicates of model 3 was very slightly 

greater than that of model 2 and this also still has some 

information to decide that model with PC prior was 

comparatively better. 

On the other regards, we extended our evidence from the 

perspective of standard errors by considering the results of 

standard deviation for the precision of the district (random 

effect) based on tables 1 and 2 (in the table legend). 

Recalling the direct proportion between standard error and 

standard deviation of the same sample size, we can say that 

the greater the standard deviation, the larger the standard 

error is. Hence, the standard deviation for the precision of 

districts in the model with default priors was 4.489 and that 

of the model with PC priors was 3.911, and considering the 

truth that the smaller the standard error, the efficient the 

model was, we still can support model with PC priors was 

better in fitting the data. Additionally, since the credible 

interval for the precision of districts of the model with PC 

priors (4.526, 19.73) was narrower than that of the model 

with default priors (5.771, 23.24), this may also assist the 

researcher to conclude that model with PC priors was 

relatively better in fitting the data. 

Generally, considering the collective evidence detailed 

above and since PC priors are informative priors, we finally 

selected the LGM of Poisson distributional assumption of TB 

cases including covariates of both fixed and random effects 

with PC priors as the best model. 

4. Discussion 

The descriptive results of the study indicated that the 

number of males with TB cases (53%) was greater than the 

number of females with the same cases. These results were in 

line with WHO reports of 2017, which also presented as the 

number of males with TB cases was greater than females 

worldwide. Similarly, the number of TB counties of middle-

aged people was greater than the two extreme categories of 

the ages and this also matches with the truth existed 

throughout the world [65] and different studies from Ethiopia 

were also persisted with this results [21, 22]. Besides, the 

descriptive summary clearly showed that the counts of the 

cases were varied from one district to the other and 

empowers the researcher to bear in account whether the 

number of population of each district may also have effect 

for the variability of the cases across the districts. 

In order to assimilate the variation in the population size 

across districts with the corresponding TB cases, the offset 

variable was included in the correction factor. The offset in a 

sense means that the expected counts of TB cases in each 

district and especially used to correct the number of events 

(TB cases). The offset is the special type of variable that was 

widely applicable when the observation was assumed to have 

Poisson distribution with the known slope of 1 that helps to 

adjust the problem due to variation in population size from 

one district to the other. 

Some of the researchers have been considered this 

adjustment under different dataset [6, 31]. But, many studies 

that included geographical variation as random effect had 

missed these potential terms offset which used to weighted 

(corrected) the effect of miss many numbers of events and 

population size [27]. Thus, our study has been filling the gap 

with the miss used of the offset variable. 

At the first stage of the model fit, the LGM with Poisson 

distributional assumption of the observations has been fitted 

with covariates of fixed effects only under R-INLA inbuilt 

default priors. The variables age, HIV-co-infection, and 

population density were found to be significant. In order to 

check the effectiveness of simplified Laplace approximation 

method that applied in this model, the researcher considered 

the value of KLD in which the minimum the KLD is the less 

difference between the standard Gaussian and the Simplified 

Laplace Approximation. In our case, since the value of KLD 

corresponding to all the variables was zero, the SLA was 

reasonably well in approximating the value which expected 

from standard Gaussian [26]. 

The LGM of Poisson distributional assumption of the 

observation which includes both fixed and random effects 

with default priors revealed that all the covariates have 

significant effects on the incidence rates of TB. The 

efficiency and relevance of the model were supported by the 

work of different researchers which in fact applied for the 

different dataset [5, 36, 50]. Moreover, the significance of the 

variables in this study was persistent with the finding of 

different researchers [51, 55]. Since KLD result was, found 

to be zero, the under used SLA has well approximated the 

standard Gaussian and no need to go for further intensive 

approximation methods like full Laplace approximation [26]. 

The other model called LGM of Poisson distributional 

assumption of observation with both the fixed and random 

effects under PC priors was applied. The same to model with 

default priors, all the covariates were found to be significant 

and the KLD values were also zero; meaning that SLA 

approximately had the same results with standard Gaussian. 

The developer of PC priors [52] has been checked the 

effectiveness of the priors with simulated data and other few 

European researchers including Professor Havard Rue who is 

famous and developer of R-INLA program [50] had also 

exercised with the same simulated data. Thus, since the prior 

was developed in a very recent time and is informative, the 

authors were intended to apply for this actual data. 

In order to make the model comparison, the researcher 



 American Journal of Bioscience and Bioengineering 2020; 8(1): 7-16 13 

 

preferred the WAIC model comparison technique because of 

theoretical reasoning and inclusive advantages of the method. 

For clarity purpose, the three candidate models were 

compared in two phases; at the first stage, model 1 and 2, and 

at the second stage model 2 and 3 were compared so that to 

selected the best model which fitted the data well. 

The results of WAIC indicated that model 2 which was the 

LGM of Poisson distributional assumption with both fixed 

and random effects under default priors was better than 

model 1 which was the same to model 2 except it includes 

only fixed covariates. Then, to check further for the effects of 

the priors, model 2 was compared with model 3 which was 

similar to model 2 except priors' assignments. Thus, since the 

WAIC of model 3 was smaller than that of model 2, the LGM 

of Poisson distributional assumption with both fixed and 

random effects considering PC priors was selected as the 

relative best model to fit the incidence rates of TB cases in 

Jimma zone. The advantages of comparison of models with 

different priors were certified under previous studies [52, 57]. 

The random effect in the study was found to be significant 

and varied across the districts. This is an indicator that 

including districts as random effect here is advantageous so 

that to identify the district (s) with the highest TB cases. With 

this study, therefore, Sekachokorsa district was found to be 

the most severed districts. Previous studies also are also 

consistent with this result that TB cases were varied across 

the geographical regions [27, 31]. 

The CPO and PIT were used for model checking. Before 

further go for graphical model checking, the researcher 

intended to check whether the usual numerical problem 

occurred during the computation of CPO. Thus, since the 

sum of the number of failure in CPO was zero, no failure was 

detected and meaning that no numerical problem has 

occurred. The histogram and scatter plot of PIT indicated that 

the predictive residual based values were almost uniformly 

distributed with very few deviated outlier and we can get 

reasonable that the predictive distribution matches the actual 

data. Besides, the same graphs of CPO also indicated that 

most of the observed predictive values have the same 

distributional shape with the tolerance of surprising 

observation. Therefore, based on the plots of both CPO and 

PIT, the predictive values seem not significantly affected by 

surprising observation and extreme outliers [37, 50]. 

5. Conclusions 

For better attainment of the model fit, three different 

candidate LGMs namely: Poisson distributional assumption 

of TB cases of fixed effects only with default priors, Poisson 

distributional assumption of TB cases of both fixed and 

random effects with default priors and Poisson distributional 

assumption of TB cases with both fixed and random effect 

under PC priors have been fitted. Thus, based upon the 

WAIC and other supportive model comparison technique, the 

LGM of Poisson distributional assumption of TB cases which 

includes both fixed and random effects with PC priors has 

been selected as the best model that fits the data well. All the 

covariates under the best model are found to be significant. 

Having the computational advantages of SLA and its better 

approximation in the data, the researcher preferred not to use 

the more computationally intensive full Laplace 

approximation. 

Based on the findings of this study, the researcher 

recommended the following points for researchers, Jimma 

health office and individuals interested in any sub-work of 

this study. 

All the covariates in this study are significant factors of TB 

cases. Thus, Jimma zone health office and other health 

sectors should have to focus on controlling TB cases with 

special focus to districts that have a high severity of the 

disease. 

The posterior marginal of this study is totally determined 

with the methods of INLA which actually is very fast and has 

a less computational burden. Thus, the researchers should 

strongly recommend so that to compare the methods. 

Interested researchers are recommended to extend this 

work by including fully spatial covariates in order to map and 

identify the hot-spot areas. This is very flexible and widely 

applicable. 
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